A Note on Rough Parametric Marcinkiewicz Functions
نویسندگان
چکیده
منابع مشابه
On the L Boundedness of Rough Parametric Marcinkiewicz Functions
In this paper, we study the L boundedness of a class of parametric Marcinkiewicz integral operators with rough kernels in L(log L)(Sn−1). Our result in this paper solves an open problem left by the authors of ([6]).
متن کاملRough Marcinkiewicz Integral Operators
We study the Marcinkiewicz integral operator M f(x) = ( ∫∞ −∞ | ∫ |y|≤2t f (x − (y))(Ω(y)/|y|n−1)dy|2dt/22t)1/2, where is a polynomial mapping from Rn into Rd and Ω is a homogeneous function of degree zero on Rn with mean value zero over the unit sphere Sn−1. We prove an Lp boundedness result of M for rough Ω. 2000 Mathematics Subject Classification. 42B20, 42B15, 42B25.
متن کاملRough Marcinkiewicz Integrals On Product Spaces
In this paper, we establish an Lp boundedness result of a class of Marcinkiewicz integral operators on product domains with rough kernels.
متن کاملOn Weighted Inequalities for Parametric Marcinkiewicz Integrals
We establish a weighted Lp boundedness of a parametric Marcinkiewicz integral operator ρ Ω,h if Ω is allowed to be in the block space B (0,−1/2) q (Sn−1) for some q > 1 and h satisfies a mild integrability condition. We apply this conclusion to obtain the weighted Lp boundedness for a class of the parametric Marcinkiewicz integral operators ∗,ρ Ω,h,λ and ρ Ω,h,S related to the Littlewood-Paley ...
متن کاملA note on Solving Parametric Polynomial Systems
Lazard and Rouillier in [9], by introducing the concept of discriminant variety, have described a new and efficient algorithm for solving parametric polynomial systems. In this paper we modify this algorithm, and we show that with our improvements the output of our algorithm is always minimal and it does not need to compute the radical of ideals.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Analysis in Theory and Applications
سال: 2020
ISSN: 1672-4070,1573-8175
DOI: 10.4208/ata.oa-2017-0074